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The paper deals with theoretical description and numerical simulations of internal sources of
heating/cooling in large strain thermo-elasticity and thermo-elasto-plasticity. The attention
is paid to metallic materials which undergo cooling in the elastic range and heating during
plastic yielding. Theoretical description can be derived from thermodynamic considerations
based on the first and second laws of thermodynamics and assumed forms of the Helmholtz
free energy. Numerical simulations within the Finite Element Method are performed for a
uniaxial tension test and elongation of a dogbone-shape sample. For the latter specimen, a
comparison with experimental results is performed, and good agreement is obtained.
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1. Introduction

In non-isothermal conditions, the response of an elastic-plastic material is usually described by
using two governing equations: the balance of linear momentum and the balance of energy. The
equations can be coupled, the thermal field can influence the mechanical one, and conversely.
In particular, a change of temperature causes thermal expansion of the material and influences
material parameters, both the mechanical (e.g. Young’s modulus or initial yield threshold) and
thermal ones (e.g. heat conductivity or heat capacity coefficients). It should be noted that the de-
creasing value of the yield limit can lead to softening of the material and to strain localization,
see e.g. Duszek and Perzyna (1991), which additionally complicates the constitutive descrip-
tion, since the response can then be incorrectly represented by a classical (local) constitutive
theory.

On the other hand, large deformation of a sample can influence heat transfer in the material
and can involve internal sources of heating or cooling. In particular, in the elastic regime, a
thermo-elastic coupling, related to the Gough-Joule effect, can be observed. Very often, the
phenomenon is related to so-called entropic materials like rubber or polymers, see Holzapfel
(2000), which undergo heating during rapid stretching. However, it is observed in experiments
that metals also show thermo-elastic coupling in the elastic regime but in a different way – their
temperature decreases during elongation (Mucha et al., 2023). A second example of the internal
heat source in a material is plastic deformation which causes heat generation due to energy
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dissipation. This matter is widely analysed in literature in the context of experiments, theory
and simulations, for example (Taylor and Quinney, 1934; Ristinmaa et al., 2007; Oliferuk et al.,
2013; Rose and Menzel, 2021; Musiał et al., 2022).

The subject of this paper is the analysis of fully thermo-mechanically coupled elasto-
-plasticity, with special attention paid to internal heat sources observed in elastic and plastic
regimes for materials undergoing large strains. The formulation is derived in a thermodynami-
cally consistent manner on the basis of the Helmholtz free energy which consists of the following
parts: reversible (including elasticity and thermal expansion), purely thermal and plastic. The
internal heat sources related to the thermo-elastic coupling and to energy dissipation during
yielding of the material can be derived from the first and second laws of thermodynamics accord-
ing to, for example, Ristinmaa et al. (2007), Oppermann et al. (2022). A simplified specification
of the plastic dissipation heat source, i.e. the application of the Taylor-Quinney factor, is also
used for comparison.

The attention in the paper is focused on metals/alloys, and isotropy of the material is as-
sumed. The thermo-mechanical coupling involves thermal expansion, internal heat sources in
elasticity and plasticity, Fourier’s law in the deformed configuration and thermal softening in
plasticity. It does not include the dependence of material parameters on temperature. The de-
scription of plasticity in this work is based on Huber-Mises-Hencky theory with associative flow
rule without viscous terms.

The presented model is implemented within the Finite Element Method (FEM) (Zienkiewicz
et al., 2005), and two specimens are tested: a cube and a dogbone-shape sample, both in tension.
Simulations for the latter specimen are compared with the results of laboratory experiments pre-
sented in Mucha et al. (2023). Although in the experiments by (Mucha et al., 2023) propagative
instabilities are observed (i.e. the Lueders bands and Portevin-Le Chatelier effect), which are not
reproduced by the presented model, the comparison of reactions and temperature is performed
in a general way, and a good agreement is obtained.

The thermo-elastic and thermo-elasto-plastic models are described using different stress and
strain measures. This approach is applied here intentionally: thermo-elasticity can easily be
described using quantities related to the reference configuration, and this allows for efficient
implementation within FEM. In turn, thermo-elasto-plasticity at large strain is based on plas-
ticity description developed in (Simo and Hughes, 1998) and (Simo and Miehe, 1992), which
involves spatial quantities, and can be effectively applied in the chosen FEM software (Korelc
and Wriggers, 2016).

The large strain elasto-plasticity theory, which takes into account the full thermo-mechanical
coupling, leads to strongly non-linear problems. Numerical simulations using such a material
model require an advanced solution approach. In this work, finite element procedures are im-
plemented within symbolic-numerical package AceGen for Wolfram Mathematica (Korelc and
Wriggers, 2016). The most significant feature of the package is automatic differentiation which
allows for computation of the tangent operator in the Newton-Raphson procedure as a derivative
of the residual vector with respect to the vector of unknowns.

The paper is laid out as follows. In Section 2, basic quantities and thermodynamic laws
are presented, which are further used in the specific models. In Section 3, the thermo-elastic
model is presented with special attention paid to thermo-elastic coupling and its numerical
simulation. The thermo-elasto-plastic model is presented, in turn, in Section 4. Two variants
of the model are investigated using FEM, the first in which plastic dissipation is calculated
directly from thermodynamic considerations and the second one related to the simplified ap-
proach with the Taylor-Quinney coefficient. The paper is closed with Section 5 including final
remarks.
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2. Fundamentals

The description of large strain kinematics applied in the presented model can be found e.g. in
(Bonet and Wood, 2008; Haupt, 2002; Wriggers, 2008). Let us consider a deformable continuous
body whose particles in the reference configuration occupy material points denoted with the
vector X. At a time t, the placement of the particle X in the current configuration is described
with the vector x(X, t). The displacement vector is defined as u(X, t) = x(X, t) −X, whereas
the deformation gradient and its determinant are

F =
∂x

∂X
= I+

∂u

∂X
J = det(F) (2.1)

Symbol I in the above equation denotes the second-order identity tensor. The left Cauchy-Green
deformation tensor, its determinant and the right Cauchy-Green deformation tensor are defined
as follows

b = FFT Jb = det(b) C = FTF (2.2)

The velocity of a particle is defined as the time derivative of x with respect to time v = ∂x/∂t =
∂u/∂t.

The first law of thermodynamics in the referential setting has the form, see e.g. (Holzapfel,
2000; Simo, 1998)

ė = P : Ḟ+R− Div (Q) (2.3)

where e is the internal energy per unit initial volume, the dot over symbol denotes time derivative
(i.e. rate), P denotes the first Piola-Kirchhoff stress tensor, R is an external source of heat per
unit of the initial volume, and Q is the Piola-Kirchhoff heat flux density vector (for detailed
discussion on heat flux density measures, see Wcisło et al. (2023)). Symbol Div (·) denotes the
divergence of vector · in the reference configuration, and the colon is used for the scalar product
of two second-order tensors.

The second law of thermodynamics in the form of Clausius-Duhem inequality reads (Truesdell
and Toupin, 1960)

ṡ− R
T
+ Div

(Q
T

)
 0 (2.4)

where the rate of entropy (per unit of initial volume) is denoted with ṡ, and the absolute
temperature with T .

The constitutive equation for the heat flow applied in this work is spatial Fourier’s law
for Kirchhoff heat flux density vector q̂ which can be equivalently expressed using the Piola
Kirchhoff heat flux, see (Wcisło et al., 2023)

q̂ = −k grad (T ) ⇐⇒ Q = −kC−1Grad (T ) (2.5)

In the above equation, the parameter k is the heat conductivity of the material, whereas symbols
grad (·) and Grad(·) denote the spatial and referential gradient of quantity ·, respectively.
The balance of linear momentum for the static case with mass forces neglected has the

following form (Simo, 1998)

Div (P) = 0 (2.6)
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3. Thermo-elasticity

3.1. Model of the thermo-elastic material

For the thermo-elastic material model, the free energy is assumed to be a function of
the deformation gradient and temperature ψ = ψ(F, T ). Using the Legendre transformation
ψ = e − Ts, see e.g. (Marsden and Hughes, 1983), the following form of the second law of
thermodynamics can be written

[
P− ∂ψ

∂F

]
: Ḟ−

[
s+

∂ψ

∂T

]
Ṫ − 1

T
Q · Grad(T )  0 (3.1)

The state equations for the first Piola-Kirchhoff stress tensor and entropy are as follows

P =
∂ψ

∂F
s = −∂ψ

∂T
(3.2)

Then the reduced form of the second law of thermodynamics is obtained

Dtherm = −
1

T
Q · Grad(T )  0 (3.3)

and it is fulfilled for the assumed Fourier law in Eq. (2.5).
Further derivations lead to temperature form of the energy balance equation

cṪ + Div (Q)−R−H = 0 c = −T ∂
2ψ

∂T 2
H = T ∂2ψ

∂F∂T
: Ḟ (3.4)

where c is the heat capacity per unit volume and H is a thermo-elastic source of heating/cooling.
In the following analysis, the specific form of the free energy function is applied, cf. (Simo

and Miehe, 1992)

ψ(F, T ) = ψ̂(b(F), T ) = ψeT (b, T ) + ψT (T ) (3.5)

The first component of the free energy ψeT is related to elastic deformation and thermal expan-
sion, whereas the second component ψeT is the purely thermal part

ψeT (b, T ) =
1

2
K ln2(

√
Jb) +

1

2
G
[
tr ([Jb]−1/3b)− 3

]
− 3KαT (T − T0) ln(

√
Jb)

ψT (T ) = c0
[
(T − T0)− T lnBigl(

T

T0

)] (3.6)

whereK and G are the bulk and shear moduli, respectively, αT is the coefficient of linear thermal
expansion, c0 is the initial specific heat capacity expressed per unit of material volume and T0 is
the initial (reference) temperature of the material. For the assumed form of the purely thermal
part of the free energy function, the heat capacity in Eq. (3.4) equals c = c0.
The thermo-elastic heating/cooling from Eq. (3.4) can now be derived as

H = −3TKαTF−1 : Ḟ (3.7)

The value of H can be positive or negative: if F−1 : Ḟ < 0 then the material undergoes heating, if
F−1 : Ḟ > 0 the material undergoes cooling. Note that the thermo-elastic heating/cooling is rate-
-dependent: the higher the rate of the deformation tensor, the greater effect of heating/cooling
produced during deformation process. It is worth emphasizing that the thermo-elastic source
of heating/cooling is dependent on the material parameters related to elasticity, i.e. the bulk
modulus and thermal expansion, and there are no additional parameters which can control the
heating/cooling source during elastic deformation.



Internal heat sources in large strain thermo-elasto-plasticity... 297

3.2. Numerical simulations for thermo-elasticity

The thermo-elastic model presented in Section 3.1 is implemented within the FEM for a
3D space in Wolfram Mathematica packages AceGen/FEM (Korelc and Wriggers, 2016). The
former package is a code generator capable of automatic differentiation, whereas the latter is a
FEM engine.

The fundamental unknowns for the problem are displacement vector u and temperature T .
For the two-field problem, hexahedral finite elements with linear interpolation of both unknown
fields are applied. To avoid volumetric locking, the code includes the modification called F-bar
(de Souza Neto et al., 20O8). The implementation aspects of thermomechanical models are
discussed in (Wcisło and Pamin, 2017).

3.2.1. Uniaxial tension test

The first computations are performed for a uniaxial tension test simulated with one cubic
finite element with dimensions L = W = H = 10mm, see Fig. 1a. The mechanical boundary
conditions are applied in such a way that the homogeneous stress state is preserved. The insu-
lation on all sides of the cube is assumed. The enforced displacement has the maximum value
∆L=0.05 mm (the sample remains in the elastic regime) and is applied monotonically within
10 , 1 s or 0.1 s, thus there are three rates of elongation under consideration called further as
slow, medium rate and fast processes. The following material data related to aluminium are
used: K = 57.133 · 109 Pa, G = 26.369 · 109 Pa, k = 121W/(m·K), c0 = 2.423 · 106 J/(m3·K),
αT = 23.2 · 10−4K−1.

Fig. 1. Uniaxial tension test for 1 FE: (a) specimen and mechanical boundary conditions, (b) sum of
reactions vs. time, (c) thermo-elastic source of heating/cooling vs. time, (d) temperature vs. time

The sum of reactions vs. (relative) process time is presented in Fig. 1b. The diagrams are
almost linear, and for different elongation rates the curves coincide in spite of different values
of thermo-elastic source of heating/cooling in Fig. 1c which depend on the process rate. It can
be observed that the value of H is negative, thus indeed the tests reproduce the thermo-elastic
cooling observed in metallic materials. The diagram presenting the evolution of temperature in
the sample is shown in Fig. 1d. Although for different process rates, different intensity of cooling
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is produced, and it does not influence the value of temperature in the sample. This behaviour
can be explained by the fact that for the homogeneous temperature distribution in the sample,
the energy balance in Eq. (3.4) reduces to equation cṪ = −3TKαTF−1 : Ḟ. The application of
the backward Euler time integration Ṫ = (T −Tn)/∆t and Ḟ = (F−Fn)/∆t, where T and F are
the values at the current time step, Tn and Fn are values from the previous time step, and ∆t
is the time increment, leads to the following closed-form formula for temperature at the current
time step

T = Tn
[
1 +
3KαTF

−1 : (F− Fn)
c

]
−1

(3.8)

It can be noted that the current value of temperature does not depend directly on time, but
only on the increment of deformation.

At this stage, it is worth mentioning that for the isotropic model, the thermo-elastic heat-
ing/cooling can also be alternatively calculated using formula (Simo and Miehe, 1992)

H = T ∂2ψ

∂J∂T
: J̇ = −3TKαT

1

J
J̇ (3.9)

In this case, the rate of determinant of the deformation gradient J̇ can be approximated straight-
forwardly using formula J̇ = (J − Jn)/∆t. However, it can be shown, see e.g. (Bonet and Wood,
2008; Wood, 2008), that J̇ = J tr (d), where d is the symmetric part of the velocity gradient. If
the velocity is approximated as v = (u−un)/∆t then the obtained results can be different. It has
been tested numerically that for aluminium and the elastic range, the choice of approximation
of J̇ does not influence the results significantly.

3.2.2. Dogbone sample – comparison with experiment in elastic range

This Subsection includes a comparison of experiments and simulations performed for a
dogbone-shape sample in tension. The description of the laboratory experiments, which are
used here, can be found in (Mucha et al., 2023). The sample of thickness 2 mm presented in
Fig. 2 is made of aluminium AW5083. The applied material parameters are the same as for the
uniaxial tension test in the previous Subsection. In the numerical tests, the specimen is insu-
lated on all sides. The experiments reported in (Mucha et al., 2023) were performed for three
displacement rates: slow 6 · 10−5m/s (experiments No. 1, 2 and 3), medium rate 6 · 10−4m/s
(experiments No. 4, 5 and 6) and fast 6 ·10−3m/s (experiments No. 7, 8 and 9). The comparison
of experimental and numerical results is presented in Fig. 3. For clarity, the experimental results
obtained for the same process rates are marked with the same colour but different line style.

Fig. 2. Geometry, dimensions (in milimeters) and discretization of the dogbone sample
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Fig. 3. Comparison of experiments and simulations for the dogbone sample in the elastic regime:
(a) sum of reactions vs. enforced displacement, (b) temperature at the central material point of the

sample vs. displacement

The constitutive model used for the simulation does not include viscous effects in the elastic
regime, and only dependence of the material response on the process rate is related to thermo-
-elastic heating/cooling. However, in the analysed case, this factor has negligible influence on
reactions, thus the black diagram in Fig. 3a is the result obtained for the three analysed rates.
It can be observed that the reaction diagrams for simulations almost coincide with the experi-
ments performed with slow and medium rates. In turn, the blue curves for the fast process are
significantly different from the rest of results, which can be attributed to an unwanted loading
machine effect.
The results of experiments presented in (Mucha et al., 2023) include measurement of tem-

perature on the surface at the central point of the sample. The comparison of experimental
and simulation outcome is performed in Fig. 3b. Also in this case the results obtained from
simulations performed for different displacement rates coincide (the black diagram). The reason
is as follows: the simulated sample and boundary conditions are symmetric, thus the obtained
temperature distribution is symmetric as well. As a result, at the central point of the sample
the temperature gradient is zero, and taking the considerations from the previous Subsection
into account, temperature is not dependent on the process rate. It can be observed in Fig. 3b
that the numerical simulations reproduce temperature evolution at the center of the sample very
well. The black line is in the middle of all experimental curves.

Fig. 4. Temperature distribution for slow, medium rate and fast processes (top, middle and bottom,
respectively) at the end of simulation

Although at the central point of the sample temperature does not depend on the deformation
rate, it is worthwhile to investigate its value obtained in simulations for the whole specimen.
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Fig. 4 shows the temperature distribution at the end of simulation for the three analysed dis-
placement rates. It can be observed that the whole sample undergoes cooling. In the central
part of the specimen temperature is similar for each process rate, however significant differences
are observed in the areas where the web widens. For the fast process, the difference between the
minimum and maximum temperature is the highest.

4. Thermo-elasto-plasticity

4.1. Model of thermo-elasto-plastic material

The description of the thermo-elasto-plastic material is based on the assumption of mul-
tiplicative decomposition of the deformation gradient into a reversible part (related to elastic
deformation and thermal expansion) and a plastic part F = FrFp, see (Ristinmaa et al., 2007),
although an alternative formula F = FθFeFp, where Fθ is a thermal part and Fe an elastic
one could also be applied, cf. (Wcisło and Pamin, 2017). Now, the left reversible Cauchy-Green
deformation tensor and its determinant are defined as

br = Fr[Fr]T Jbr = det(br) (4.1)

Further, the spatial velocity gradient and its decomposition are written, cf. (Ristinmaa et al.,
2007)

l = ḞF−1 l = lr + lp lr = Ḟr[Fr]−1 lp = FrḞp[Fp]−1[Fr]−1 (4.2)

The symmetric part of the velocity gradient and its plastic part are as follows

d = sym(l) dp = sym(lp) (4.3)

The Helmholtz free energy for the isotropic thermo-elasto-plastic material is assumed here
as a function of the left reversible Cauchy-Green deformation tensor, internal variable associated
with isotropic hardening α and temperature: ψ = ψ(br, α, T ), see (Ristinmaa et al., 2007). The
dissipation inequality for this case is

D = τ : d− sṪ − ψ̇ − 1
T
Q · Grad(T )  0 (4.4)

where τ is the Kirchhoff stress tensor. After derivations, the above equation can be presented
in the following form

D =
[
τ − 2 ∂ψ

∂br
br
]
: d+ 2

∂ψ

∂br
br : dp − ∂ψ

∂α
α̇− 1

T
Q · Grad(T )  0 (4.5)

The state equations for the Kirchhoff stress tensor and thermodynamic force conjugated to α
are specified as

τ = 2
∂ψ

∂br
br h =

∂ψ

∂α
(4.6)

Now, the reduced form of dissipation inequality can be written

D = τ : dp − hα̇− 1
T
Q · Grad (T )  0 (4.7)

The total dissipation can be divided into mechanical and thermal contribution as follows

Dmech = τ : dp − hα̇  0 Dtherm = −
1

T
Q · Grad (T )  0 (4.8)



Internal heat sources in large strain thermo-elasto-plasticity... 301

Next, the energy balance equation in temperature form can be written for the thermo-elasto-
-plastic material

cṪ + Div (Q) = H+Dmech +A︸ ︷︷ ︸
Qmech

+R c = −T ∂
2ψ

∂T 2

H =
[
T
∂τ

∂T

]
: [d− dp] A = T ∂h

∂T
α̇

(4.9)

In the above equation, Qmech represents the mechanical heat production rate which consists of
thermo-elastic heating/cooling H, mechanical dissipation related to the plastic process Dmech
and contribution A which is related to the temperature dependence of the thermodynamic force
conjugated to the hardening variable.
In the subsequent analysis, we assume free energy ψ = ψr(br, T ) + ψp(α) + ψT (T ) which is

additively decoupled into reversible, plastic and purely thermal parts as follows, see (Ristinmaa
et al., 2007)

ψr =
1

2
K ln2(J) +

1

2
G
[
tr ([Jbr]−1/3br)− 3

]
− 3KαT (T − T0) ln(J)

ψp =
1

2
Hα2 + [σyf − σy0]

[
α+
1

δ
exp(−δα)

]

ψT (T ) = c0
[
(T − T0)− T ln

( T
T0

)]
(4.10)

The introduction of the above specific form of the free energy allows for derivation of the
thermodynamic force conjugated to the hardening variable as

h = Hα+ [σyf − σy0][1− exp(−δα)] (4.11)

where σy0 is the initial yield threshold, σyf is the final yield threshold and δ is a saturation
constant. Moreover, the heat capacity from Eq. (4.9) remains constant c = c0.
To complete the description of plasticity, the yield function and the flow rule have to be

specified. In this work, the volume preserving Huber-Mises-Hencky yield function is applied

Fp(τ , α, T ) = f(τ )−
√
2

3
σy(α, T ) ¬ 0 f(τ ) =

√
τ dev : τ dev

τ dev = τ −
1

3
tr (τ )I σy(α, T ) =

[
1−HT [T − T0]

]
σy0 + h

(4.12)

where HT is the thermal softening modulus and T0 is the reference temperature.
The flow rule is defined through the Lie derivative of br, cf. (Simo and Miehe, 1992)

−1
2
Lvbr = γ̇Npbr Np =

∂Fp
∂τ

where γ̇ is a plastic multiplier related to the hardening variable by formula α̇ =
√
2/3γ̇.

Now, having the thermo-elasto-plastic model in hand, the structural sources of heating can
be analysed in more detail. The thermo-elastic source of heat from Eq. (4.9) can be written as

H = −3KαT [ tr (d)− tr (dp)] = −3KαT
[ 1
J
J̇ − 1

Jp
J̇p
]

Jp = det(Fp) (4.13)

The yield function leads to J̇p = 0, so that the above equation can be rewritten as

H = −3TKαT tr (d) = −3TKαT
1

J
J̇ (4.14)
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The second structural source of heat, i.e. plastic dissipation, can be derived as

Dmech = τ : dp︸ ︷︷ ︸
ẇp

−hα̇ = γ̇
[
f −
√
2

3
h
]
=

√
2

3
γ̇
[
1−HT [T − T0]

]
σy0 (4.15)

The fraction of rate of plastic work ẇp which is converted into heat can be calculated as, cf.
(Ristinmaa et al., 2007)

η = 1− hα̇

τ : dp
=
[1−HT [T − T0]]σy0

σy
(4.16)

As it was mentioned in the introduction, an alternative estimation for the plastic dissipation
often used in literature is, see e.g. (Wriggers et al., 1992)

Dmech = χẇp = χ[τ : dp] =
√
2

3
χγ̇σy (4.17)

where χ is the fraction of rate of plastic work converted into heat, often called the Taylor-
-Quinney coefficient, which is usually assumed to be a constant material parameter with value
from interval 0.8-0.95.

4.2. Numerical simulations for thermo-elasto-plasticity

Numerical verification of the presented thermo-elasto-plastic model is performed similarly to
the thermo-elasticity using two specimens: the cube presented in Fig. 1a and the dogbone sample,
see Fig. 2. The main attention is now paid to the influence of transition from the elastic to plastic
regime on the temperature change in the sample and the impact of the applied formulation of
plastic dissipation, in particular plastic dissipation calculated:
a) straightforwardly from thermodynamic, i.e. using Eq. (4.15), called further Model 1

b) using Taylor-Quinney coefficient according to Eq. (4.17) called further Model 2.

Both samples are simulated using the same material properties. The elastic and thermal
parameters related to aluminium are taken from Section 3.2.1, whereas the parameters describing
the plastic behaviour are as follows: σy0 = 150 · 106 Pa, σyf = 390 · 106 Pa, H = 0, δ = 12,
HT = 0.0016K

−1. For Model 2, the value of the Taylor-Quinney coefficient equals χ = 0.9.

4.2.1. Uniaxial tension test

The cubic sample from Fig. 1a is now elongated by ∆L = 1mm within 16.7 s which gives
the displacement rate equal to 6 · 10−5m/s. The results obtained in simulations are presented in
Fig. 5. The diagram presenting the sum of reactions (Fig. 5a) shows that the onset of plasticity
takes place when t/tproc = 0.02 and from this point the diagram related to plasticity with
significant strain hardening is observed. The reactions are very close for the two applied models
of plastic dissipation, however, differences are observed for the temperature diagram in Fig. 5b.
In this case, Model 1 manifests higher temperature in the sample at the beginning of the plastic
process and lower in the second part, and this is consistent with the amount of dissipated
energy during the process, cf. Fig. 5c. As the elongation progresses, the difference in the plastic
dissipation for the two models becomes greater. In the last diagram presented in Fig. 5, the
fraction of the plastic work converted into heat is presented for the two analysed models. For
Model 1, the fraction with coefficient η defined in Eq. (4.16) is shown. It can be observed that
the constant fraction of the plastic work defined by coefficient χ used in Model 2 can be treated
as an average of the fraction calculated with Model 1 for the initial part of plastic deformation
(for the whole process the averaged value of η is lower than the applied value of χ).
It is worth noting that in the elastic regime the thermo-elastic cooling is properly reproduced

as a decrease in temperature at the beginning of the process, see Fig. 5b. The onset of plasticity
can also be recognized as the moment at which temperature in the sample starts to grow.
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Fig. 5. Results for the uniaxial tension test for thermo-elasto-plasticity: (a) sum of reactions,
(b) temperature, (c) plastic dissipation, (d) fraction of plastic work converted into heat source

4.2.2. Dogbone sample – comparison with experiment for elasto-plasticity

The dogbone sample is elongated now with the displacement rate 6·10−5m/s. The simulations
are performed for the slow process due to the fact that the plasticity description does not include
viscosity, which can have a significant impact on the results for faster deformation. The results of
computational tests for the dogbone specimen are presented in Fig. 6. At the initial stage of the
plastic process, see Fig. 6a, a slight softening and plateau in the diagram is visible. This behaviour
is related to the formation and expansion of Lueders bands. The material model which is used
in the simulation does not reproduce this phenomenon, however, it correctly it simulates the
onset of plasticity and the overall plastic behaviour until the failure, see Fig. 6b. The oscillations
visible in the experimental diagrams in Fig. 6b are a result of the PLC effect. The differences
between Model 1 and Model 2 are negligible in the displacement-force diagram, however the
choice of the model has a significant influence on temperature evolution, see Fig. 7. Model 1,
which predicts plastic dissipation directly from thermodynamics, shows higher temperature at
the beginning of the plastic process and lower in the following part of the process with respect
to Model 2. The analysis of the diagrams in Fig. 7 clearly shows that Model 1 is closer to the
experimental results.

Note that the temperature evolution in the elastic regime is very close to experimental
measurements and, what is of great importance, the increase of temperature starts in simulations
and experiments exactly at the same moment. Thus the analysis of temperature evolution (the
end of elastic cooling) allows for detection of plasticity onset.

The deformed samples with temperature distribution in the middle of the elongation process
(enforced displacement equals 15mm) are depicted in Fig. 8. Both the plots of temperature,
obtained with Model 1 and Model 2, are presented using the same scale, which allows for a
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Fig. 6. Sum of reactions vs. enforced displacement: (a) initial stage, (b) whole process

Fig. 7. Temperature at the central point of the sample vs. enforced displacement: (a) initial stage,
(b) whole process

Fig. 8. Deformed mesh with temperature distribution in the middle of the deformation process for
Model 1 (top) and Model 2 (bottom)

comparison. Model 2 manifests significantly higher temperatures in the sample than Model 1.
For both models, the highest temperature is located in the central part of the sample and it is
a precursor of necking.

5. Conclusion

The paper is focused on internal heat sources observed in large strain thermo-elastic and thermo-
-elasto-plastic materials. It includes description of material models and presentation of numerical
simulations with remarks aimed at deeper understanding of the phenomena. Computations have
been performed using AceGen/AceFEM packages in Wolfram Mathematica, starting from a
one-element test. Then a dogbone-shape sample has been analysed, for which the results have
been compared with experimental ones.
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In the elastic regime, the presented and implemented model reproduces thermo-elastic cooling
characteristics for metals, e.g. for aluminium, which is in general a rate-dependent phenomenon.
However, it has been shown in the analysis of uniaxial tension tests that for samples with homo-
geneous temperature distribution the diagrams do not depend on the tension rate. Experimental
and computational results for the dogbone sample show a good agreement for both the sum of re-
actions and temperature diagrams, even though there is no direct material parameter to control
the cooling rate in the model.
For the plastic material, the attention has been focused on the heating source related to

plastic dissipation. Two models have been used, Model 1 in which dissipation is calculated
directly from thermodynamic derivation and Model 2 where estimation of plastic dissipation
is obtained using the Taylor-Quinney coefficient. The force-displacement diagrams for the two
thermo-elasto-plastic models overlap, however, the diagrams of temperature differ from the be-
ginning of the plastic process, which is a result of different amount of dissipated energy in the two
analysed models. Overall, good agreement between experimental and computational results has
been obtained, and Model 1 gives results closer to experimental ones especially for the advanced
stage of the process.
The incorporation of thermo-elastic coupling in the thermo-elasto-plastic model allows one to

recognize the beginning of the plastic process at a material point, and the presented simulations
properly reproduce the transition from elastic to plastic regime observed in the experimental
sample.
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